2. FORMULATION: THE CHARACTERISTIC FUNCTION

In this section we obtain the general forms of the first-order charac-
teristic functions (c.f.'s) and probability densities (p.d.'s) and distri-
butions (P.D.'s) for the "impulsive" interference of the various man-made
and natural sources described in Part I above.

Our first step is to derive the desired general forms of the charac-
teristic functions for the envelope of the received wave. The next step
is to take advantage of the various physical conditions of the model, fur-
ther to reduce our results to the particular expressions appropriate to
the Class A and Class B interference, which can then be put in forms suitable
for evaluation. A number of important parameters of these interference
processes appear in the analysis and have important physical 1mp]1cat1ons,

‘which we shall develop further in the subsequent sections.

2.1 The Basic Statistical Model:
We assume as before [Middleton, 1974] for our basic model that there
is an infinite number of potential sources in a source domain A, and that

while the basic waveforms emitted all have the same form, their scale,
durations, frequencies, etc., may be randomly distributed. Our fundamental
postulate of this basic interference model is that: (i), the locations '

of the various possible emitting sources are poisson distributed in space;
(i1), the emission times of the possible sources are similarly poisson
distributed in time. Physically, this means that the sources are stati-
stically independent, both in location and emission. Thus, by a slight
generalization of earlier results [Middleton; 1967, 1972b, 19?4], we can
write for the first-order characteristic function of the instantaneous
amplitude, X, of the received interference process

F](ia)x=exp{<f p(2,8) éigu(t;g,g,...)_] >% dé) . (2.1
Ay 8 .

Here € is an epoch, indicating vis-i-vis the receiver's (i.e. observer's)
time t when a source may emit. The A= (r,0,¢) are coﬁrdinates, or a

vector magnitude, appropriate to the geomtry of the source field, located

in the region A, and of the- receiver, with dr (= dxd¢) for a surface e1ement,
(= drded¢) for a volume element. The quantity p(X,€) is the "process
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density" of this joint space-time poisson interference process, and is non-

negative, and can be regarded as proportional to a probability density

[cf. (2.28) below]. The < > denotes a statistical average, e.g.

f[e][ ]w](e)qg, over various random parameters (8) which may be pertinent

to our source model, such as doppler, source amplitude and duration, etc.
The U are the typical waveforms of the emitting sources, after recep-

tion by the (assumed linear) aperture - RF - IF stages of our "narrow-band"

receiver. The received process X is given by

e = [ utlpe@, (2.2)

Z(=Ax8)

where the {dN} are a poisson point process (in A and €), such that
(X(t)) = _/; U(dN) = <_/;-:(&,€)U(t;g\,,é,g)d_g dé‘> s (2.3a)
5 A 8

is the process mean (if any), and

X(t1)X(t))) i[{z U]U2<dN1dN2> = <4J(g¢,é)u(t] ;},,e,g)u(tz;&,é,g)gg\d%

)

w

+ X0ty DX, | (2.30)

is the general second-moment of X(t), under our basic poisson assumption
above of source location and emission.* Higher moments may be similarly
obtained.

Since we are interested here in the envelope of the received process X,
which is always narrow-band, in as much as the receiver is itself narrow-
band, we have to consider the new'random variables XC, Xs’ representing the
slowly-varying "in-phase" and "out-of-phase" components of X, viz.,

1w t
Re% —1X )e } Re{
Re{ }, (2 4a)

* For a general development of process statistics, not necessarily Timited to
the poisson case of independent sources, see, for example, recent work
[Middleton,1974,1975b] in the development of generalized scattering models.

1]

X(t) = Xc(t)cos m0?+xs(t)s1n w,t
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where now w0(=2nf0) is the central (angular) frequency of the final (zIF)
stage of the receiver, and

—_ 2, v2 - = -1 --“.-_' =1 =
E = XC+XS s ¥ = tan (XS/XC) s ..XD XC iXs = Ee

-iw Y
2 (2.4b)

with

Xc = E cos v, XS = E sin ¢.
Here E, ¢ are, respectively the envelope and phase of the narrow band re-
ceived process X. In functional form, cf. (2.2), we can write alternatively

' jw t
X(t) = Re{j‘_;[Ul,:(t]'Z\,)—1'US(tlzv)]e1 g dN(g)} , or (2.5a)
iw_t-ig (t1Z
= Re{[e(t[;); ot it Lw)dN(g)} . (2.5b)
A

in terms of an envelope and phase, where
e(t|z) = YUZU% ; o = tan"(U_/U) (2.5¢)
b C s S ke stTc’” ’

Comparing (2.5) and (2.4) we see at once that

O KURT AR (2.62)
- -1 (t]Z
TR jz‘e(t|_2_)e el udN(g) : (2.6b)

wt

The characteristic function which we need now is for the random vari-
ables XC, Xs, namely,

" 'iEUC'l"inUS i
Fi(ig’i”)x X = exp{<ﬁ:(&,e)[e -1]>g5de}, (2.7)
c’’s A

which is the two-dimensional generalization of (2.1) required here. The
corresponding p.d. is

7 L -1EX - TnX, 2
Wy (XeaX) -ffﬂ(za-,m)xC’XS e dedn/(2m)° . (2.8)
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Also, we have, formally, the following expression for the joint first-
order density of envelope E and phase ¢, in terms of the in-phase and out-
of-phase components XC,XS of X.

2(X X !
w](EslP) = W] (XC’XS) ) = EN-[(E cos y,E siny), E> 0
0<y<2n
(2.9)

where w1,.(2.8), is now

H](E cos ¥,E sin ) =ffF](1'£,1'n) e_.iE(E cos ¥in sin w)dadn/(Zw)z,
X X
i o M c

. (2.9a)
with F] therein given by (2.7)

To proceed further, we make use of a number of results from our earlier
development of the physical model [Sec. 2.2, Middleton, 1974], to write for
~ the narrow-band basic waveform U (at the output of the receiver's IF)

(2.10)

U= U = By(tale0)cosuyr(tale,s),  wy= Tte

Ud d)
where B0 (>0) is an envelope, whose detailed structure we shall consider in

more detail Tater and where ¥ is a phase, which has the form
N -1 .
¥ = ug(t-a-e) - Lo (t-A-€,0)+¢ 0 (A, F )+op(A.F )T (2.10a)

in which 9> ¢7s $p are respectively the tyﬁica] source phase, and the
phase angles of the source (T) and receiver (R), complex beam patterns
fef. Sec. 2.5 below]. [The quantity ed(=ud—1) is the sum of the relative
dopplers between sources and the receiver, and is always small, 0(10"5’"6),
in our applications, vizs e 2v/c = 0(10"6) for v = 0(105 mph) so that the
envelope B0 is independent of €4
From the fact that Unb = Uccos m0t+Ussin mot, we see at once from (2.10)
that

_Uc = Bocqs[¢;+udwo(x+é)—edmot]; U= BOSTn[¢;+udw0(l+§)-sdwot], (2.11)
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where ¢; = o tortop. We now use polar codrdinates
E=rcosé 3 n=rsing; [a(g,m)/alrye)] =r (2:]12a)

and transform from (£,n)-space to (r,¢)-space in (2.9a). Thus, we see that

dedn Fy(ig,in)y y =T F(ir,e)drdg , 0 <r<w; 0<¢<2m (2120)
C, S

The c.f. ?1 is Fy(ir cos ¢,ir sin ¢)y y » (2.7), which with (2.17) now
reduces explicitly to s

. ' | irB_cos[®'+u w (A+e)-e t-¢1]
Fy(ir,e) = exp{<fp(5,€)e ° G0 die -> %dé} ;
! g

£2.13)
The first-order p.d. for the envelope and phase (E,v), (2.9), with the help
of (2.12b), (2.9a), becomes

. © 2m . 5
w(E) = Ef rarf  SEF (ir,g)e tEr €08 (v=¢)
L fG j; (2n)2 !

E>0,0<y <2m. (2.14)

This is as far as we can go without further appeal to the physical
model, in particular, to the statistics governing the locations (&&) of the
sources and the epoch (&) of interference emissions. We note, however, that
the p.d. for the envelope alone is readily found, e.g.* the integration
over ¥ (in 0,27), is well-known [cf. (2.19) following)]:

2m o 27 .
N](E) = f w](E,gb)dtp = Ef rJO(r'E)dr Fi(ir,¢)de/2m. (2.15)
0 : 0 0

As usual, functions of different arguments are different functions, e.g.
wl(E)fw](w)#N](Xc,Xs), etc., unless it is otherwise stated.
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In addition, we have respectively for the P.D., and exceedance probability,
or APD (a posterior probability here, that E exceeds a level EO(>O)J defined

as usual by
E

0 oQ
D](Eo) = J; NT(E)dE 2 P1(E350) E.J; W1(E)dE-= 1-D(EO), (2.16)
0 .

the following results, where we have used

z
[ aa,2)dz = 20, (2), (2.162)
0 _
Viz:
@ ZTTA
D1 (Ey) = EOJ[; Jp(rE )dr A Fo(ir,¢)de/2m, E, 20 (2.:17a)
o -I‘ZﬂA ' '
P](EEEO] = ]-EOJ; J](rEO)dr : F](1r,¢)d¢/2w . (2,1?b)

Our results (2.13)-(2.17) are generalizations of earlier results
[Furutsu and Ishida, 1960; Middleton, 1972b; Giordano, 1970], where our
basic assumptions, so far, postulate only poisson'distributions of source
Tocation and emissions, e.g. essentially independent sources. No restric-
tions on the specific character of the statistics of the source parameters
are as yet introduced. It is for this reason that the characteristic
function ﬁl depends on ¢, as well as on r.

2.2 First Reduction of the c.f. ?]: The Narrow-Band Recejver Condition
At this point we invoke certain properties of the basic waveform
Bocos[¢;+udw0(A+€)-mosdt—¢]_which appears in the exponent in the integrand

of (2.13). We use the facts that (1), By> dg, are both slowly-varying
functions of A; and (ii), the process density p(&,é) is Tikewise slowly
varying, vis-a-vis cos Wk ¢ s sin WM gAe Employing the familiar expansion
in Bessel functions,

44



